If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-14x=5
We move all terms to the left:
x^2-14x-(5)=0
a = 1; b = -14; c = -5;
Δ = b2-4ac
Δ = -142-4·1·(-5)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-6\sqrt{6}}{2*1}=\frac{14-6\sqrt{6}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+6\sqrt{6}}{2*1}=\frac{14+6\sqrt{6}}{2} $
| 18=6+3x(2x+2) | | 18=6+3x,2x+2 | | 5x-8x=3(x+4 | | x^2+7=103 | | 3x^+2=7x | | |5x|+5=15 | | 4(2+3b)+5b=13 | | −4(2+3b)+5b=13 | | 2t+24-12t+9=14 | | 19=6y | | (n+1)*n/2=210 | | (a+3)(a-2)=-5 | | 1.2=y-6.7 | | (a-4)(a-2)=2 | | 12c-6+24c+16=31 | | x^2-1x+12=0 | | 3x-248=180 | | 2x-248=180 | | 9-x=12-3x | | a+-6=13 | | 11.5+b=11/3 | | –18+j=3j | | –8h=–9h+17 | | 2/3(5/8+4y)-3/8=5/8 | | x^2=(x+3)+4 | | –3+4d=9 | | 9=–3+4d | | 3w+3=30;21 | | 5x(2x+1)−3(2x+1)=0 | | –15=–3(w+13) | | u3=3 | | -3h-8=-32 |